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Abstract. A covariant version of the quark–parton model is studied. The dependence of the structure
functions and parton distributions on the 3D intrinsic motion of the quarks is discussed. The import-
ant role of the orbital momentum of the quark, which is a particular case of intrinsic motion, appears
as a direct consequence of the covariant description. The effect of the orbital motion is substantial, es-
pecially for polarized structure functions. At the same time, the procedure for obtaining the momentum
distributions of polarized quarks from the combination of polarized and unpolarized structure functions is
suggested.
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1 Introduction

The nucleon structure functions are a basic tool for un-
derstanding the internal structure of the nucleon in the
language of QCD. At the same time, measurement and
analysis of the structure functions represent an import-
ant experimental test of this theory. Unpolarized nucleon
structure functions are known with high accuracy in a
very broad kinematical region, but in recent years also
some precision measurements on the polarized structure
functions have been completed [1–8]. For the present sta-
tus of the spin structure of the nucleon, see e.g. [9] and
references therein. The more formal aspects of the struc-
ture functions of the nucleon are explained in [10]. In
fact, only the complete set of the four electromagnetic
unpolarized and polarized structure functions F1, F2, g1
and g2 can give a consistent picture of the nucleon. How-
ever, this picture is usually drawn in terms of the dis-
tribution functions, which are connected with the struc-
ture functions in some model-dependent way. Distribution
functions are not directly accessible from experiment, and
the model that is normally applied for their extraction
from the structure functions is the well known quark–
partonmodel (QPM). Application of this model to analysis
and interpretation of the unpolarized data does not cre-
ate any contradiction. On the other hand, the situation
is much less clear in the case of the spin functions g1
and g2.
In our previous study [12, 13] we have suggested that

a reasonable explanation of the experimentally measured
spin functions g1 and g2 is possible in terms of a generalized
covariant QPM in which the intrinsic motion of the quarks
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(i.e. 3D motion with respect to the nucleon rest frame) is
consistently taken into account. Therefore the transversal
momentum of the quarks appears in this approach on the
same level as the longitudinal one. The quarks are repre-
sented by free Dirac spinors, which allows one to obtain
an exact and covariant solution for the relations between
the quark momentum distribution functions and the struc-
ture functions accessible from experiment. In this way the
model (in its present LO version) contains no dynamics
but only the “exact” kinematics of the quarks, so it can be
an effective tool for analysis and interpretation of the ex-
perimental data on the structure functions, particularly for
separating the effects of the dynamics (QCD) from the ef-
fects of the kinematics. This point of view is well supported
by our previous results.
In the cited papers we showed that the model sim-

ply implies the well known sum rules (due to Wanzura–
Wilczek, Efremov–Leader–Teryaev and Burkhardt–
Cottingham) for the spin functions g1, g2. Simultaneously,
we showed that the same set of assumptions implies a
rather substantial dependence of the first moment Γ1 of the
function g1 on the kinematical effects. Further, we showed
that the model allows one to calculate the functions g1
and g2 from the unpolarized valence quark distributions,
and the result is quite compatible with the experimental
data. In [14] we showed that the model allows one to re-
late the transversity distribution to some other structure
functions.
These results cannot be obtained from the standard

versions of the QPM (naive or QCD improved), which are
currently used for the analysis of experimental data on the
structure functions. The reason is that the standard QPM
is based on the simplified and non-covariant kinematics in
the infinite momentum frame (IMF), which does not allow
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one to properly take into account the intrinsic or orbital
motion of the quarks.
The subject of our previous study was the question:

what is the dependence of the structure functions on the
intrinsic motion of the quarks? The aim of the present pa-
per is a discussion of related problems: how can one extract
information about the intrinsic motion of the quarks from
the experimentally measured structure functions? What is
the role of the orbital momentum of the quarks, which is
a particular case of the intrinsic motion?
The paper is organized as follows. In the first part of

Sect. 2 the basic formulas, which follow from the general-
ized QPM, are presented. The general covariant relations
are compared with their limiting case, which is represented
by the standard formulation of the QPM in the IMF. In
the next part of the section we calculate the 3D momen-
tum distributions of the quarks and the structure functions
are used as the input. The momentum distributions of pos-
itively and negatively polarized quarks are separately ob-
tained from the combination of the structure functions F2
and g1 or the corresponding parton distributions q(x) and
∆q(x). A particular form of intrinsic motion of the quarks
is the orbital momentum. In Sect. 3 the role of the orbital
momentum of the quark in covariant description is dis-
cussed, and it is shown why its contribution to the total
angular momentum of the quark can be quite substantial.
It is demonstrated that the orbital motion is an inseparable
part of the covariant approach. The last section is devoted
to a short summary and to our conclusions. In fact, this
paper is inspired by many previous papers, see e.g. [15–
27], in which the problem of the orbital momentum of the
quarks in the context of nucleon spin was recognized and
studied.

2 Structure functions
and intrinsic quark motion

In our previous study [11–13] of the proton structure
functions we showed how these functions depend on the
intrinsic motion of the quarks. The quarks in the sug-
gested model are represented by free fermions, which are
in the rest frame of the nucleon described by a set of dis-
tribution functions with spheric symmetry, G±k (p0)d

3p,

where p0 =
√
m2+p2, and the symbol k represents the

quark and antiquark flavors. These distributions meas-
ure the probability to find a quark of given flavor in the
state

u(p, λn) =
1
√
N

(
φλn
pσ
p0+m

φλn

)

;

1

2
nσφλn = λφλn , N =

2p0
p0+m

, (1)

where m and p are the quark mass and momentum, λ=
±1/2, φ†λnφλn = 1 and n coincides with the direction of
the polarization of the nucleon. The distributions together
with the corresponding quark (and antiquark) charges ek

allow one to define the generic functions G and ∆G1:

G(p0) =
∑

k

e2kGk(p0) , Gk(p0)≡G
+
k (p0)+G

−
k (p0) ,

(2)

∆G(p0) =
∑

k

e2k∆Gk(p0) , ∆Gk(p0)≡G
+
k (p0)−G

−
k (p0) ,

(3)

from which the structure functions can be obtained. If q is
the momentum of the photon absorbed by the nucleon of
momentum P and massM , in which the phase space of the
quarks is controlled by the distributions G±k (p0)d

3p, then
there are the following representations of the correspond-
ing LO structure functions.

Manifestly covariant representation

First we have the unpolarized structure functions:

F1(x) =
M

2

(
A+
B

γ

)
, F2(x) =

Pq

2Mγ

(
A+
3B

γ

)
, (4)

where

A=
1

Pq

∫
G

(
Pp

M

)
[pq−m2]δ

(
pq

Pq
−x

)
d3p

p0
, (5)

B =
1

Pq

∫
G

(
pP

M

)[(
Pp

M

)2
+
(Pp)(Pq)

M2
−
pq

2

]

× δ

(
pq

Pq
−x

)
d3p

p0
(6)

and

γ = 1−

(
Pq

Mq

)2
. (7)

The functions F1 =MW1 and F2 = (Pq/M)W2 follow
from the tensor equation

(
− gαβ+

qαqβ

q2

)
W1+

(
Pα−

Pq

q2
qα

)(
Pβ−

Pq

q2
qβ

)
W2

M2

=

∫
G

(
pP

M

)
[2pαpβ+pαqβ+ qαpβ− gαβpq]

× δ

(
(p+ q)2−m2

)
d3p

p0
. (8)

1 In [12, 13] we used a different notation for the distributions
defined by (2) and (3): G±k , ∆Gk and ∆G were denoted hk±,
∆hk and H. Apart from that we assumed for simplicity that
only three (valence) quarks contribute to the sums (2) and (3).
In the present paper we assume contributions of all the quarks
and antiquarks, but apparently the general form of relations
(4)–(7) and (10)–(12) is in the LO approach independent of the
chosen set of quarks.
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The modification of the delta function term

δ((p+ q)2−m2) = δ(2pq+ q2)

= δ

(
2Pq

(
pq

Pq
−
Q2

2Pq

))

=
1

2Pq
δ

(
pq

Pq
−x

)
,

q2 =−Q2, x=
Q2

2Pq
, (9)

introduces the dependence on the Bjorken variable x. Then
contracting with the tensors gαβ and PαPβ gives the set of
two equations, which determine the functions F1 and F2 in
accordance with (4)–(7).
Next, we treat the polarized structure functions. As

follows from [12] the corresponding spin functions in co-
variant form read

g1 = Pq

(
GS−

Pq

qS
GP

)
, g2 =

(Pq)2

qS
GP , (10)

where S is the spin polarization vector of the nucleon, and
the functions GP andGS are defined by

GP =
m

2Pq

∫
∆G

(
pP

M

)
pS

pP +mM

×

[
1+

1

mM

(
pP −

pu

qu
Pq

)]
δ

(
pq

Pq
−x

)
d3p

p0
,

(11)

GS =
m

2Pq

∫
∆G

(
pP

M

)[
1+

pS

pP +mM

M

m

(
pS−

pu

qu
qS

)]

× δ

(
pq

Pq
−x

)
d3p

p0
, (12)

u= q+(qS)S−
(Pq)

M2
P .

Rest frame representation

We now come to the rest frame representation for Q2�
4M2x2. As follows from the appendix in [12], if Q2�
4M2x2 and the above integrals are expressed in terms of
the rest frame variables of the nucleon, then one can sub-
stitute

pq

Pq
→
p0+p1
M

,

and the structure functions are simplified as follows:

F1(x) =
Mx

2

∫
G(p0)δ

(
p0+p1
M

−x

)
d3p

p0
, (13)

F2(x) =Mx
2

∫
G(p0)δ

(
p0+p1
M

−x

)
d3p

p0
, (14)

g1(x) =
1

2

∫
∆G(p0)

(
m+p1+

p21
p0+m

)

× δ

(
p0+p1
M

−x

)
d3p

p0
, (15)

g2(x) =−
1

2

∫
∆G(p0)

(
p1+

p21−p
2
T/2

p0+m

)

× δ

(
p0+p1
M

−x

)
d3p

p0
, (16)

where p1 and pT are the longitudinal and transversal mo-
mentum components of the quark. These structure func-
tions consist of terms like

q(x) =Mx

∫
Gq(p0)δ

(
p0+p1
M

−x

)
d3p

p0
, (17)

∆q(x) =

∫
∆Gq(p0)

(
m+p1+

p21
p0+m

)

× δ

(
p0+p1
M

−x

)
d3p

p0
, (18)

which correspond to the contributions from different quark
flavors, q = u, ū, d, d̄, s, s̄, . . . Let us remark, in the limit of
the IMF approach (see next paragraph), that these func-
tions represent probabilistic distributions of the quark mo-
mentum in terms of the fraction x of the momentum of the
nucleon, p= xP . However, the content and interpretation
of the functions (17) and (18) depending on the Bjorken
variable x is more complex; their form reflects in a non-
trivial way the intrinsic 3D motion of quarks.

Standard IMF representation

On the standard IMF representation we remark the follow-
ing. The usual formulation of the QPM gives the known
relations between the structure functions and the parton
distribution functions [10]:

F1(x) =
1

2

∑

q

e2qq(x) , F2(x) = x
∑

q

e2qq(x) , (19)

g1(x) =
1

2

∑

q

e2q∆q(x), g2(x) = 0 , (20)

where the functions

q(x) = q+(x)+ q−(x) , ∆q(x) = q+(x)− q−(x) (21)

represent probabilistic distributions of the momentum
fraction x of the quark in the IMF. In Appendix A we have
proved that these relations represent the particular, limit
case of the covariant relations (4) and (10).
The three versions of the relations between the struc-

ture functions and the quark distributions can be
compared. If we skip the function g2 in the IMF rep-
resentation, then the relations (19) and (20) practically
represent the identity between the structure functions and
distributions of the quark momentum fraction. Such sim-
ple relations are valid only for the IMF approach based
on the approximation (A.1), which means that the in-
trinsic motion of the quarks is suppressed. In the more
general versions (the covariant and the rest frame represen-
tation), where the intrinsic motion is allowed, the relations
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are more complex. The intrinsic motion strongly modifies
also the g2. In the standard IMF representation one has
g2(x) = 0, but g2(x) �= 0 in the covariant and the rest frame
representations.
The rest frame representation allows one to easily

calculate the dependence of the first moment Γ1 on
the rate of intrinsic motion. A more detailed discus-
sion follows in the next section. The same approach im-
plies that the functions g1 and g2 for massless quarks
satisfy a relation equivalent to the Wanzura–Wilczek
term and obey some well known sum rules, as is shown
in [12].
The functions F1 and F2 exactly satisfy the Callan–

Gross relation F2(x)/F1(x) = 2x in the rest frame and
the IMF representations, but this relation is satisfied only
approximately in the manifestly covariant representation:
F2(x)/F1(x) ≈ 2x+O(4M2x2/Q2).
The task which was solved in the different approxima-

tions above can be formulated as follows: how can one
obtain the structure functions F1, F2 and g1, g2 from
the probabilistic distributions G and ∆G defined by (2)
and (3)? But now we will study the inverse problem; the
aim is to find a rule for obtaining the distribution functions
G and ∆G from the structure functions. In the present pa-
per we consider the functions F2 and g1 represented by (14)
and (15). As follows from Appendix A in [13], the function

Vn(x) =

∫
K(p0)

(
p0

M

)n
δ

(
p0+p1
M

−x

)
d3p (22)

satisfies

V ′n(x±)x± =∓2πMK(ξ)ξ
√
ξ2−m2

(
ξ

M

)n
;

x± =
ξ±
√
ξ2−m2

M
. (23)

In this section we consider only the case m→ 0; then we
have

V ′n(x)x=−2πMK(ξ)ξ
2

(
ξ

M

)n
; x=

2ξ

M
. (24)

As we shall see below, with the use of this relation one
can obtain the probabilistic distributions G(p) and ∆G(p)
from the experimentally measured structure functions.
The same procedure will be applied to get Gq(p) and
∆Gq(p) from the usual parton distributions q(x) and
∆q(x), defined by (19) and (20).
Let us remark that in the present stage QCD evolution

is not included into the model. However, this fact does not
represent any restriction for the present purpose: to obtain
information about the distributions of the quarks at some
scaleQ2 from the structure functions measured at the same
Q2. The distribution of the gluons is another part of the nu-
cleon picture. But since our present discussion is directed
to the relation between the structure functions and the cor-
responding distributions of the quarks at a given scale, the
gluon distribution is left aside.

2.1 Momentum distribution
from structure function F2

In accordance with the definition (22), in which the dis-
tribution K(p0) is substituted for by G(p0), the structure
function (14) can be written in the form

F2(x) = x
2V−1(x) . (25)

Then, with the use of (24), one gets

G(p) =−
1

πM3

(
F2(x)

x2

)′

=
1

πM3x2

(
2F2(x)

x
−F ′2(x)

)
;

x=
2p

M
, p≡

√
p2 = p0 , (26)

which in terms of the quark distributions means

Gq(p) =−
1

πM3

(
q(x)

x

)′
=

1

πM3x2
(q(x)−xq′(x)) . (27)

The probability distribution Gq measures the number of
quarks of flavor q in the element d3p. Since d3p= 4πp2dp,
the distribution measuring the number of quarks in the
element dp/M reads

Pq(p) = 4πp
2MGq(p) =−x

2

(
q(x)

x

)′
= q(x)−xq′(x) .

(28)

The probability distribution Gq(p) is positive, so the last
relation implies

(
q(x)

x

)′
≤ 0 . (29)

Let us note that the maximum value of the momentum
of the quark is pmax =M/2, which is a consequence of
the kinematics in the nucleon rest frame, where the single
quarkmomentummust be compensated by the momentum
of the other partons.
Another quantity that can be obtained is the distribu-

tion of the transversalmomentum of the quarks. Obviously
the integral

dNq
dp2T

=

∫
Gq(p)δ

(
p22+p

2
3−p

2
T

)
d3p , (30)

which represents the number of quarks in the element dp2T,
can be modified as

dNq
dp2T

= 2π

∫ √p2max−p2T

0

Gq

(√
p21+p

2
T

)
dp1 . (31)

It follows that the distribution corresponding to the num-
ber of quarks in the element dpT/M reads

Pq(pT) =M
dNq
dpT

= 4πpTM

∫ √p2max−p2T

0

Gq

(√
p21+p

2
T

)
dp1 .

(32)
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Fig. 1. The quark momentum distributions in the rest frame
of the proton: the p and pT distributions for valence quarks
Pq,val = Pq−Pq̄ and sea quarks Pq̄ at Q

2 = 4GeV2. Notation:
u, ū is indicated by a solid line, d, d̄ by a dashed line and s̄ by a
dotted line

Then, with the use of (28), one gets the distribution

Pq(pT) =
4pT
M2

∫ √p2max−p2T

0

1

x2
(q(x)−xq′(x))dp1 ,

x=
2
√
p21+p

2
T

M
. (33)

In Fig. 1 the distributions (28) and (33) are displayed for
the valence and sea quarks. As input we used the standard
parameterization [28] of the parton distribution functions
q(x) and q̄(x) (LO at the scale 4 GeV2). The resulting dis-
tributions Pq and Pq̄ are positive, and this means that the
input distributions q and q̄ satisfy the constraint (29).
Using (27) one can calculate the mean values

〈p〉q =

∫
pGq(p)d

3p∫
Gq(p)d3p

=
M

2

∫ 1
0
x(q(x)−xq′(x))dx
∫ 1
0 (q(x)−xq

′(x))dx
. (34)

In the case of sea quarks extrapolation of the distribution
functions for x→ 0 gives a divergent integral in the de-
nominator, and it follows that 〈p〉sea→ 0. For the valence
quarks qval = q− q̄ this integral converges and integration
by parts gives

〈p〉q,val =
3M

4

∫ 1
0
xqval(x)dx
∫ 1
0 qval(x)dx

. (35)

Calculation of 〈p〉q,val gives roughly 0.11 GeV/c for u and
0.083GeV/c for d quarks. Since Gq(p) has rotational sym-
metry, the average transversal momentum can be calcu-
lated to be 〈pT〉= π/4 · 〈p〉.

2.2 Momentum distribution
from structure function g1

In (44) of [13] we proved that

g1(x) = V0(x)−

∫ 1

x

(
4
x2

y3
−
x

y2

)
V0(y)dy , (36)

where the function V0 is defined by (22) for n = 0 and
K(p) = ∆G(p). In Appendix B it is shown that the last re-
lation can be modified to:

V−1(x) =
2

x

(
g1(x)+2

∫ 1

x

g1(y)

y
dy

)
. (37)

Then, in an accordance with (24), we obtain

V ′−1(x) =−πM
3∆G(p) , x=

2p

M
, (38)

∆G(p) =−
2

πM3

[
1

x

(
g1(x)+2

∫ 1

x

g1(y)

y
dy

)]′
(39)

or

∆G(p) =
2

πM3x2

(
3g1(x)+2

∫ 1

x

g1(y)

y
dy−xg′1(x)

)
.

(40)

Now we substitute

∆q(x) = 2g1(x) ,

g1(x)+ g2(x) =

∫ 1

x

g1(y)

y
dy =∆qT(x)/2 (41)

and next we shall consider the flavors separately. The sec-
ond equality represents the Wanzura–Wilczek relation for
the twist-2 approximation of g2, which is valid for the
present approach, as proved in [13]. Now (40) in terms of
the quark distributions reads

∆Gq(p) =
1

πM3x2

(
3∆q(x)+2

∫ 1

x

∆q(y)

y
dy−x∆q′(x)

)
,

(42)

or, equivalently, with the use of (39) and (41),

∆Gq(p) =−
1

πM3

(
∆q(x)+2∆qT(x)

x

)′
; x=

2p

M
. (43)

Obviously the distribution ∆Gq together with the distribu-
tion (27) allows one to obtain the polarized distributions
G±q as follows:

G±q (p) =
1

2
(Gq(p)±∆Gq(p)) . (44)

The distributions ∆Gq and G
±
q measure the number of

quarks in the element d3p. They can be replaced, similarly
as the distributionGq in (28), by the distributions ∆Pq and
P±q , measuring the number of quarks in the element dp/M :

∆Pq(p) = 3∆q(x)+2

∫ 1

x

∆q(y)

y
dy−x∆q′(x) , (45)

P±q (p) =
1

2
(q(x)−xq′(x))

±

(
3

2
∆q(x)+

∫ 1

x

∆q(y)

y
dy−

x

2
∆q′(x)

)
.

(46)
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Obviously the probability distributions should satisfy

|∆Gq(p)| ≤Gq(p) , (47)

which after inserting the results from (43) and (27) implies

∣∣∣∣

(
∆q(x)+2∆qT(x)

x

)′∣∣∣∣≤−
(
q(x)

x

)′
, (48)

where positivity of the right hand side was required in (29).
Another self-consistency test of the approach is repre-
sented by the inequality

|∆q(x)| ≤ q(x) , (49)

which is proved in Appendix C.
With the use of (17) one can formally calculate the

partial structure functions corresponding to the subsets of
positively and negatively polarized quarks:

f±q (x) =Mx

∫
G±q (p)δ

(
p0+p1
M

−x

)
d3p

p0
. (50)

Apparently the following equation holds:

fq(x) ≡ f
+
q (x)+f

−
q (x) = q(x) , (51)

and one can also define

∆fq(x) = f
+
q (x)−f

−
q (x) , (52)

or, equivalently,

∆fq(x) =Mx

∫
∆Gq(p)δ

(
p0+p1
M

−x

)
d3p

p0
. (53)

Obviously we have

f±q (x) =
1

2
(fq(x)±∆fq(x)) , (54)

and (47) implies

|∆fq(x)| ≤ q(x) . (55)

Let us note that f+q + f
−
q = q, but f

+
q − f

−
q �= ∆q in the

sense of (17) and (18). The last inequality is replaced by
equality only in the limit of the IMF approach. The rela-
tion (53) can be written

∆fq(x) = xVq,−1(x) , (56)

where

Vq,−1(x) =M

∫
∆Gq(p)δ

(
p0+p1
M

−x

)
d3p

p0
. (57)

At the same time (37) can be replaced by

Vq,−1(x) =
1

x

(
∆q(x)+2

∫ 1

x

∆q(y)

y
dy

)
, (58)

which, after inserting the result from (56), gives

∆fq(x) = ∆q(x)+2

∫ 1

x

∆q(y)

y
dy. (59)

This equality together with (55) gives

∣∣∣∣∆q(x)+2
∫ 1

x

∆q(y)

y
dy

∣∣∣∣≤ q(x) , (60)

or, equivalently,

|∆q(x)+2∆qT(x)| ≤ q(x) . (61)

Now, using the input on q(x) [28] and ∆q(x) [29] (LO at
the scale 4 GeV2) one can calculate the distributions ∆Pq,
Pq and P

±
q and the related structure functions ∆fq, fq and

f±q . The result is displayed in Fig. 2 and one can observe
the following.
Positivity of the distributions P±q and f

±
q implies that

the self-consistency tests (47) and (55) and their equiv-
alents (48) and (60) are satisfied with the exception of
a small negative disturbance in G−u (P

−
u ) and f

−
u . A pos-

sible reason is that the results of the two different pro-
cedures for fitting q(x) and ∆q(x) are combined and some
uncertainty is unavoidable.
The mean value of the distribution ∆Gq can be esti-

mated to be

〈p〉q =

∫
p∆Gq(p)d

3p∫
∆Gq(p)d3p

=
M

2

∫ 1
0 x∆q(x)dx∫ 1
0
∆q(x)dx

. (62)

Fig. 2. The probability distributions ∆Pq, Pq, P
+
q and P

−
q of

the u, d, s quarks, and the related structure functions ∆fq, fq,
f+q and f

−
q are represented by the solid , dashed , dash-and-dot

and dotted lines
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The proof of this relation is given in Appendix D. The
numerical calculation gives 0.090GeV/c for the u and
0.070GeV/c for the d quarks. These numbers are well com-
parable with those calculated from (35), which correspond
to the valence quarks. Also the shape of the distributions
x∆fu(x) and x∆fd(x) is very similar to that of the va-
lence terms. In other words, the results confirm that the
spin contribution of the quarks comes dominantly from the
valence region.
Due to the input values with ∆u(x) > 0 and ∆d(x) < 0

one can expect that P+u ≥ P
−
u , P

−
d ≥ P

+
d , f

+
u ≥ f

−
u and

f−d ≥ f
+
d . Besides, the curves in the figure show that P

−
u ,

P+d , f
−
u and f

+
d are close to zero, at least in the valence

region.

3 Intrinsic quark motion
and orbital momentum

The rules of quantum mechanics say that angular mo-
mentum consists of an orbital and a spin part, j = l+
s, and that in the relativistic case the quantities l and
s are not conserved separately, but only the total an-
gular momentum j is conserved. This simple fact was
in the context of quarks inside the nucleon pointed out
in [30]. It means that only j2 and jz are well-defined quan-
tum numbers and the corresponding states of the particle
with spin 1/2 are represented by the bispinor spherical
waves [31]

ψkjljz (p) =
δ(p−k)

p
√
2p0

(
i−l
√
p0+mΩjljz (ω)

i−λ
√
p0−mΩjλjz (ω)

)

, (63)

where ω = p/p, l = j± 12 , λ= 2j− l (l defines the parity)
and

Ωj,l,jz (ω) =

⎛

⎝

√
j+jz
2j Yl,jz−1/2(ω)√
j−jz
2j Yl,jz+1/2(ω)

⎞

⎠ ; l = j−
1

2
,

Ωj,l,jz (ω) =

⎛

⎝
−
√
j−jz+1
2j+2 Yl,jz−1/2(ω)

√
j+jz+1
2j+2 Yl,jz+1/2(ω)

⎞

⎠ ; l = j+
1

2
.

The states are normalized by

∫
ψ†
k′j′l′j′z

(p)ψkjljz (p)d
3p= δ(k−k′)δjj′δll′δjzj′z . (64)

The wavefunction (63) is simplified for j = jz = 1/2 and
l = 0. Taking into account that

Y00 =
1
√
4π
, Y10 = i

√
3

4π
cos θ ,

Y11 =−i

√
3

8π
sin θ exp(iϕ) ,

one gets

ψkjljz (p) =
δ(p−k)

p
√
8πp0

⎛

⎜⎜
⎝

√
p0+m

(
1
0

)

−
√
p0−m

(
cos θ

sin θ exp(iϕ)

)

⎞

⎟⎟
⎠ .

(65)

Let us note that j = 1/2 is the minimum angular momen-
tum for a particle with spin 1/2. If one considers the quark
state as a superposition,

Ψ(p) =

∫
akψkjljz (p)dk ,

∫
a�kak dk = 1 , (66)

then its average spin contribution to the total angular mo-
mentum reads

〈s〉=

∫
Ψ†(p)ΣzΨ(p)d

3p , Σz =
1

2

(
σz ·
· σz

)
. (67)

After inserting (65) and (66) into (67) one gets

〈s〉=

∫
a�pap

(p0+m)+ (p0−m)(cos2 θ− sin
2 θ)

16πp2p0
d3p

=
1

2

∫
a�pap

(
1

3
+
2m

3p0

)
dp . (68)

Since j = 1/2, the last relation implies for the orbital mo-
mentum of the quark that

〈l〉=
1

3

∫
a�pap

(
1−
m

p0

)
dp . (69)

This means that for quarks in the state j = jz = 1/2 there
are the following extreme scenarios.
Either one has massive and static quarks (p0 =m),

which implies that 〈s〉 = j = 1/2 and 〈l〉 = 0. This is evi-
dent, since without kinetic energy no orbital momentum
can be generated.
But another possibility is that one has massless quarks

(m� p0), which implies that 〈s〉= 1/6 and 〈l〉= 1/3.
Generally, for p0 ≥m, one gets 1/3≤ 〈s〉/j ≤ 1. In other

words, for the states with p0 >m, part of the total angular
momentum j = 1/2 is necessarily generated by the orbital
momentum. This is a consequence of quantum mechanics,
and not a consequence of the particular model. If one as-
sumes the effective mass of the quark to be of the order
of thousandths and the intrinsic momentum to be of the
order of tenths of GeV, which is a quite realistic assump-
tion, then the second scenario is clearly preferred. Further,
the mean kinetic energy corresponding to the superposi-
tion (66) reads

〈Ekin〉=

∫
a�papEkindp; Ekin = p0−m, (70)

and at the same time (69) can be rewritten

〈l〉=
1

3

∫
a�pap

Ekin

p0
dp . (71)



128 P. Závada: Parton distribution functions and quark orbital motion

It is evident that for fixed j = 1/2 both quantities are al-
most equivalent in the nucleon rest frame: more kinetic
energy generates more orbital momentum and vice versa.
Further, the average spin part 〈s〉 of the total angu-

lar momentum j = 1/2 related to a single quark according
to (68) can be compared to the integral

Γ1 =

∫ 1

0

g1(x)dx , (72)

which measures the total quark spin contribution to the
spin of the nucleon. For g1 in (15) this integral reads

Γ1 =
1

2

∫
∆G(p0)

(
1

3
+
2m

3p0

)
d3p . (73)

The dependence of the integrals (68) and (73) on the intrin-
sic motion is controlled by the same term (1/3+2m/3p0),
which in both cases has its origin in the covariant kine-
matics of the particle with s= 1/2. In fact, the procedures
for the calculation of these integrals are based on the two
different representations of the solutions of the Dirac equa-
tion: plane waves (1) and spherical waves (65). It is appar-
ent that for the scenario of massless quarks (m� p0), due
to the necessary presence of the orbital motion, both num-
bers Γ1 and 〈s〉 are roughly three times less than for the
scenario of massive and static quarks (m p0). What is the
underlying physics behind the interplay between the spin
and orbital momentum? Actually, speaking about the spin
of the particle represented by the state (1), one should take
into account the following.
The definite projection of the spin in the direction n

is a well-defined quantum number only for the particle at
rest (p = 0) or for the particle moving in the direction n,
i.e. p/p=±n. In these cases we have

s= u†(p, λn)nΣu(p, λn) =±1/2 . (74)

But in other cases, as shown in Appendix E, only the
inequality

〈s〉= |u†(p, λn)nΣu(p, λn)| < 1/2 (75)

is satisfied. Roughly speaking, the result of measuring
the spin of a quark depends on its momentum in the
given reference frame (the rest frame of the nucleon).
This obvious effect acts also in the states that are rep-
resented by the superposition of plane waves (1) with
different momenta p and resulting in 〈p〉 = 0, but with
〈p2〉 > 0. In [12] we showed that averaging of the spin
projection (75) over the spherical momentum distribution
gives the result equivalent to (73). The state (66) can
also be decomposed into plane waves having a spherical
momentum distribution and the spin mean value given
by (68). The well-defined quantum numbers j = jz = 1/2
imply that the spin reduction due to an increasing intrin-
sic kinetic energy is compensated by an increasing orbital
momentum.
Now, what does the preferred scenario of massless

quarks (〈m/p0〉 � 1) imply for the spin structure of the

Table 1. Relative integral contributions of the quark spins (S),
orbital momenta (L) and their sum (J) to the total spin of the
nucleon. Results are shown of our calculation (right) and the
prediction of the CQSM model (left)

CQSM Present paper

Q2 = 0.3 GeV2 Q2 = 4GeV2 ∆Σ = 0.2 ∆Σ = 0.3

S [%] 35.0 31.8 20.0 30.0
L [%] 65.0 35.8 40.0 60.0
J [%] 100.0 67.6 60.0 90.0

whole nucleon, and what are the integral quark spin and
orbital contributions to the spin of the nucleon? Obviously,
using some input on the total quark longitudinal polar-
ization ∆Σ, one can estimate the relative quark spin and
orbital contributions to be

S =∆Σ , L= 2∆Σ , ∆Σ =
∑

q

∫ 1

0

∆q(x)dx . (76)

At the same time our approach can be compared with
the calculation based on the chiral quark soliton model
(CQSM) [24, 25], in which a significant role for the or-
bital momentum of the quark is assumed as well. In
Table 1 some results of both models are shown. In spite
of some similarity between the two sets of numbers,
there are substantial differences between both approaches.
Let us mention at least the two that seem to be most
evident.
First, the presence of a significant fraction of the or-

bital momentum in the CQSM apparently follows from
the dynamics inherent in the model. On the other hand,
in our approach the important role of the orbital momen-
tum follows from the kinematics, so it should not be too
sensitive to the details of the inherent dynamics. Actu-
ally the effect takes place in LO when quarks interacting
with the probing photon can be effectively described as
free fermions in states like (66) with a sufficiently low ef-
fective ratio 〈m/p0〉, which controls the fraction of orbital
momentum (69). Of course, the value of this ratio itself is a
question of the dynamics.
Second, in the CQSM antiquarks are predicted to have

opposite signs for the spin and orbital contributions. In our
approach the two contributions are proportional and have
the same signs regardless of flavor or antiflavor.
A last comment concerns the total angular momentum

of the quarks, J , by which room for the gluon contribu-
tion Jg is defined. Results in Table 1 related to the CQSM
suggest that a higher Q2 implies a greater gluon contri-
bution. Our results suggest that the gluon contribution
can be rather sensitive to the longitudinal polarization: for
∆Σ  1/3, 0.3 and 0.2 the gluon contribution can repre-
sent 0, 10 and 40%, respectively. So the value empirically
known [25],

∆Σ  0.2–0.35 , (77)

does not exclude any of these possibilities.
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4 Summary and conclusion

We studied a covariant version of the QPM with spheri-
cally symmetric distributions of the quark momentum in
the rest frame of the nucleon. The main results obtained in
this paper can be summarized as follows.
The relations between the distribution functions q(x),

∆q(x) and the corresponding 3D momentum distributions
G±q (p) = Gq(p)±∆Gq(p) of the quarks are obtained. In
this way the momentum distributions of the positively
and negatively polarized quarksG±q (p) are calculated from
the experimentally measured structure functions F2 and
g1. At the same time these relations, due to positivity of
the probabilistic distributions Gq and G

±
q , imply some in-

equalities for q(x) and ∆q(x). We proved that these con-
straints, serving as self-consistency tests of the approach,
are satisfied.
Next, we showed that an important role of the or-

bital momentum of the quark emerges as a direct conse-
quence of a covariant description. Since in the relativis-
tic case only the total angular momentum j = l+ s is a
well-defined quantum number, there arises some inter-
play between its spin and orbital parts. For the quark
in the state, jz = 1/2, as a result of this interplay its
spin part is reduced in favor of the orbital one. The role
of the orbital motion increases with the rate of the in-
trinsic motion of the quark; for 〈m/p0〉 � 1 its fraction
reaches 〈lz〉 = 2/6, whereas 〈sz〉 = 1/6 only. Simultan-
eously this effect is truly reproduced also in the formalism
of structure functions, and in this connection some impli-
cations for the global spin structure of the nucleon were
suggested.
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Appendix A: Structure functions
in the approach
of the infinite momentum frame

The necessary condition for obtaining the equalities (19)
and (20) is the covariant relation

pα = yPα , (A.1)

which implies

m= yM , (A.2)

and p= 0 in the rest frame of the nucleon and pT = 0 in the
IMF.
For the calculation of the integrals (5) and (6) in the

IMF approach one can substitute p by yP , and d3p/p0 by

πdp2Tdy/y. Then, after some algebra the structure func-
tions (4) read

F1(x) =
1

2
Mx

∫
G(yM)δ(y−x)πdp2T

dy

y
,

F2(x) =Mx
2

∫
G(yM)δ(y−x)πdp2T

dy

y
. (A.3)

Since the approximation (A.1) implies a sharply peaked
distribution at p2T→ 0, one can identify

MGq(yM)πdp
2
T = q(y) , (A.4)

and then (19) and (A.3) after integrating are equivalent.
In the same way the equalities (10)–(12) can be modi-

fied. Taking into account that pS→ yPS = 0, one obtains

g1(x) =
m

2

∫
∆G(yM)δ(y−x)πdp2T

dy

y
, g2(x) = 0 .

(A.5)

If we put

M∆Gq(yM)πdp
2
T =∆q(y) (A.6)

and take into account (A.2), then it is obvious that (20)
and (A.5) are equivalent.

Appendix B: Proof of (37)

In [13] we proved the relation

V ′j (x)

V ′k(x)
=

(
x

2
+
x20
2x

)j−k
; x0 =

m

M
, (B.1)

which form→ 0 implies

V0(x) =
1

2

(
xV−1(x)+

∫ x

0

V−1(y)dy

)
. (B.2)

After inserting V0 from this relation into (36) one gets

g1(x) =
1

2

(
xV−1(x)+

∫ x

0

V−1(y)dy

)

−2x2
(∫ 1

x

V−1(y)

y2
dy+

∫ 1

x

1

y3

∫ 1

y

V−1(z)dzdy

)

+
1

2
x

(∫ 1

x

V−1(y)

y
dy+

∫ 1

x

1

y2

∫ 1

y

V−1(z)dzdy

)
.

(B.3)

The double integrals can be reduced by integration by
parts with the use of

∫ 1

x

a(y)

(∫ 1

y

b(z)dz

)
dy =

∫ 1

x

(A(y)−A(x))b(y)dy ,

A′(x) = a(x) , (B.4)
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and then (B.3) is simplified:

g1(x) =
1

2
xV−1(x)−x

2

∫ 1

x

V−1(y)

y2
dy . (B.5)

In the next step we extract V−1 from this relation. After the
substitution V (x) = V−1(x)/x, the relation reads

g1(x)

x2
=
1

2
V (x)−

∫ 1

x

V (y)

y
dy , (B.6)

which implies the differential equation for V (x):

1

2
V ′(x)+

V (x)

x
=

(
g1(x)

x2

)′
. (B.7)

The corresponding homogeneous equation

1

2
V ′(x)+

V (x)

x
= 0 (B.8)

gives the solution

V (x) =
C

x2
, (B.9)

which after inserting into (B.7) gives

C′(x) = 2x2
(
g1(x)

x2

)′
. (B.10)

After integration one easily gets the relation inverse
to (B.5):

V−1(x) =
2

x

(
g1(x)+2

∫ 1

x

g1(y)

y
dy

)
, (B.11)

which coincides with (37).

Appendix C: Proof of (49)

The relations (17) and (18) imply that the inequality (49)
is satisfied if

p0+p1 ≥

∣∣∣∣m+p1+
p21
p0+m

∣∣∣∣=
∣∣∣∣p0+p1−

p2T
p0+m

∣∣∣∣ . (C.1)

There are two cases.
First, p0+p1−p2T/(p0+m)≥ 0; then instead of (C.1)

one can write

p0+p1 ≥ p0+p1−
p2T
p0+m

, (C.2)

which is always satisfied.
Second, p0+p1−p2T/(p0+m)< 0; then (C.1) is equiva-

lent to

p0+p1 ≥−p0−p1+
p2T
p0+m

⇔ 2(p0+p1)≥
p2T
p0+m

.

(C.3)

Since

2p0 ≥ p0−p1⇒ 2(p0+m)≥ p0−p1
⇒ 2(p0+m)(p0+p1)≥ (p0−p1)(p0+p1)

⇒ 2(p0+m)(p0+p1)≥ p
2
T

⇒ 2(p0+p1)≥
p2T
p0+m

,

(C.3) is always satisfied. In this way (C.1) and (49) are
proved.

Appendix D: Proof of (62)

The relation (40) implies

∫
∆Gq(p)d

3p

=
1

2

∫ 1

0

(
3∆q(x)+2

∫ 1

x

∆q(y)

y
dy−x∆q′(x)

)
dx

(D.1)

and

∫
p∆Gq(p)d

3p

=
M

4

∫ 1

0

(
3x∆q(x)+2x

∫ 1

x

∆q(y)

y
dy−x2∆q′(x)

)
dx .

(D.2)

If one denotes

Γ q1 =

∫ 1

0

∆q(x)dx , Γ q2 =

∫ 1

0

x∆q(x)dx , (D.3)

then integration by parts gives

∫ 1

0

∫ 1

x

∆q(y)

y
dydx= Γ q1 ,

∫ 1

0

x∆q′(x)dx=−Γ q1

(D.4)

and

∫ 1

0

2x

∫ 1

x

∆q(y)

y
dydx= Γ q2 ,

∫ 1

0

x2∆q′(x)dx=−2Γ q2 .

(D.5)

Now, one can easily express the ratio:

∫
p∆Gq(p)d

3p∫
∆Gq(p)d3p

=
M

2

Γ q2
Γ q1
, (D.6)

and in this way (62) is proved.
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Appendix E: Proof of (75)

With the use of the rule

pσ ·nσ+nσ ·pσ = 2pn (E.1)

the term in (75) can be modified as follows:

u†(p, λn)nΣu(p, λn)

=
1

2N
φ†λn

(
nσ+

pσ ·nσ ·pσ

(p0+m)2

)
φλn

=
1

2N
φ†λn

(
nσ+

pσ · (−pσ ·nσ+2pn)

(p0+m)2

)
φλn

=
1

2N
φ†λn

(
nσ

(
1−

p2

(p0+m)2

)
+
2pn ·pσ

(p0+m)2

)
φλn

=
1

2p0
φ†λn

(
m ·nΣ+

pn ·pσ

p0+m

)
φλn . (E.2)

Since

∣∣φ†λnnσφλn
∣∣= 1 ,

∣∣φ†λnpσφλn
∣∣≤ p , pn= p cosα ,

(E.3)

it follows that

|u†(p, λn)nΣu(p, λn)| ≤
1

2p0

(
m+

p2

p0+m

)
=
1

2
. (E.4)

Obviously

|u†(p, λn)nΣu(p, λn)| =
1

2
(E.5)

only for p/p=±n or p= 0.
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